Aktuálně: Nový finanční systém - SPDR nabízí doživotní měsíční rentu, oddlužení. financování vlastních projektů. Více zde...
Město Krnov - Přímá pomoc jedné domácnosti postižené povodní. Více zde...
Město Krnov - Přímá pomoc jedné domácnosti postižené povodní. Více zde...
D14, Meyersova najnovšia aktualizácia, december 2007
Moderátor: sano
- sano
- Zasloužilý člen
- Příspěvky: 942
- Registrován: stř 08 úno 2006 23:48
- Dostal: 18 poděkování
D14, Meyersova najnovšia aktualizácia, december 2007
V tejto aktualizácii, p. Kelly popisuje spôsob ako ladiť trúbky v Meyersovom vyvíjači. Čo sa deje? Dávajú skoro všetko čo doteraz tajili. Nevie z Vás niekto?
Nemáte oprávnění prohlížet přiložené soubory.
- sano
- Zasloužilý člen
- Příspěvky: 942
- Registrován: stř 08 úno 2006 23:48
- Dostal: 18 poděkování
Možnosť konzultácie ku Meyersovi
Uvádzam adresu fóra, kde sa dá konzultovať problém ku Myersovmu vyvíjaču.
http://www.overunity.com/index.php?topic=3079
http://www.overunity.com/index.php?topic=3079
Re: D14, Meyersova najnovšia aktualizácia, december 2007
strojový překlad
Nemáte oprávnění prohlížet přiložené soubory.
- la
- Zasloužilý člen
- Příspěvky: 1854
- Registrován: úte 06 úno 2007 19:04
- Bydliště: Brno
- Dal: 763 poděkování
- Dostal: 238 poděkování
- sano
- Zasloužilý člen
- Příspěvky: 942
- Registrován: stř 08 úno 2006 23:48
- Dostal: 18 poděkování
najnovšia aktualizácia meyersa marec 08
Najnovšia aktualizácia Meyersovho vyvíjača marec 08. Od stránky 101 až do konca kapitoly. Prepáčte, v originály je spoločne s Bobom Boysom.
Archív, z ktorého som doteraz čerpal na panaceauniversity.com, už prestal fungovať. Dúfam, že ostane aspoň toto.
http://www.free-energy-info.co.uk/
Archív, z ktorého som doteraz čerpal na panaceauniversity.com, už prestal fungovať. Dúfam, že ostane aspoň toto.
http://www.free-energy-info.co.uk/
Nemáte oprávnění prohlížet přiložené soubory.
- martinq
- Zasloužilý člen
- Příspěvky: 1235
- Registrován: pon 27 bře 2006 16:33
- Bydliště: Prágl
- Dal: 31 poděkování
- Dostal: 203 poděkování
zdroj replika od inda
Kód: Vybrat vše
http://www.hotlinkfiles.com/browse/srawofni/33693
seznam souborů:
Nemáte oprávnění prohlížet přiložené soubory.
Vím, že vím vše, aneb meditace o ničem.
- sano
- Zasloužilý člen
- Příspěvky: 942
- Registrován: stř 08 úno 2006 23:48
- Dostal: 18 poděkování
niekoľko amatérskych výpočtov ku rezonančnému obvodu
[Vo]:Re: Sample numbers for resonant AC electrolysis
Horace Heffner
Sat, 01 Sep 2007 15:54:10 -0700
On Jun 29, 1999, at 11:42 PM, Horace Heffner wrote:
Reviewing the resonant circuit proposed for use with an AC electrolysis cell:
I1
--------------- V1
| |
| -------------
| | |
| | C1
AC L1 | I2
| | |
| | I3 R1
| | |
| -------------
| |
--------------- Ground
AC - AC source
L1 - Inductor
C1 - The cell capacitance
R1 - The net cell resistance
I1 - Input current (rms)
I2 - Cell current (rms)
I3 - Inductor current (rms)
V1 - supply voltage = cell voltage
Xl - Reactance of L1
Xc - Reactance of C2
Fig. 1 - Resonant circuit for AC electrolysis cell
When the operating frequency is at the resonant frequency for the tank
circuit L1, C1, R1, the net impedence of the tank circuitis maximum to the
AC source, thus the current through the cell I2 is at a maximum with
respect to the input current I1. In fact,
I2 = Q * I1 = I3
Where Q is given by:
Q = Xl/R1
and is a measure of the sharpness of the resonance peak. Since values of Q
over 100 are not uncommon in ordinary resonance circuits, this is
fascinating, and hints at ou behaviour all by itself, assuming the cell can be made efficient enough that heat from ambient becomes a large contributor
to the splitting reaction.
The cell is portrayed as a capacitor C1, though it is known that its makeup is really more in the form of a lattice where elements connecting nodal points consist of a resistor and capacitor in parallel. In addition, the cell is capacitively linked, so there is a set of capacitances around the electrolyte as well. A simplified model of the cell might look like the
following:
|
|
C2
|
-----------------
| |
| |
C4 R2
| |
| |
-----------------
|
|
C3
|
Fig. 2 - Simplified circuit for
capacitively linked cell
Here C2 and C3 are the capacitive interface to the electrolyte, either an insulator around the electordes, the tank walls, or a combination. The
elecrolyte, or slurry, is represented by C4 and R2 in parallel. For
purposes of simplifying the analysis, the electrolyte resistance R2 can be
rolled into the tank resistance R1, and we also have for the series
capacitances:
1/C1 = 1/(C2 + C3 + C4)
In other words, if R2 is large, if the cell walls and electrolyte all have the same dielectric constant, then the cell is equivalent to a capacitor the width of the cell, including electrolyte and plate insulators. If R2
is very small, then:
1/C1 = 1/(C2 + C3)
and we can treat the two insulators as an equivalent insulator as thick as
the sum of the two.
It is especially of interest that, as the cell area gets bigger, R2 drops,
yet the capacitance C1 increases, thus Q increases. This has the
appearance of some kind of economy of scale.
Now for some sample design numbers.
ASSUMPTIONS
10 cm x 10 cm plates (plate size)
V1 = 20 kV (resonant operating voltage)
Ke = 50 (dielectric constant of ceramic)
Ks = 1000 V/mil = 3.94 x 10^5 V/cm (dielectric strength)
F0 = 16,000 Hz (resonant frequency)
R1 = cell resistance = 1 ohm
CALCULATIONS
Total plate thickness D1 = V1/Ks = (2x10^5 V)/(3.94 x 10^5 V/cm) = 0.508 cm
Using 50 percent margin, D1 = .762 cm
Area A = 100 cm^2
The ratio A/d1 = (100 cm^2)/(0.762 cm) = 131
Capacitance C1 = Ke (A/d1) (8.85 x 10^-12 F) = 5.80x10^-8 F
Impedence of capacitor Xc = 1/(2 Pi F0 C1) = 1/(2 Pi (16,000) (5.80x10^-8 F))
Xc = 172 ohms
Current through cell I2 = V1/Xc = (20,000 V)/(172 ohms) = 116 amps
Knowing energy of inducatance is equal to energy of capacitance we have:
L1/C1 = (V1/Ic)^2 = (20000/116)^2 ohms^2, so we have
inductance L1 = (2.97x10^4)(C1) H = (2.97x10^4)(5.80x10^-8) H
L1 = 1.72 mH
Inductive reactance Xl = 2 Pi F0 L1 = 2 Pi (16000) (1.72x10^-3) ohms
Xl = 173 ohms
Q = Xl/R1 = 173/1 = 173
Thus we have the driving current:
I1 = I2/Q = (116 A)/173 = 0.67 A
And driving power:
Pd = I1 * V1 = (0.67 A) (20,000 V) = 13.4 kW
Apparent power:
Pa = I2 * V1 = (116 A) (20,000 V) = 2.32 MW
Horace Heffner
http://www.mtaonline.net/~hheffner/
[Vo]:Re: Sample numbers for resonant AC electrolysis Horace Heffner
Reply via email to
Horace Heffner
Sat, 01 Sep 2007 15:54:10 -0700
On Jun 29, 1999, at 11:42 PM, Horace Heffner wrote:
Reviewing the resonant circuit proposed for use with an AC electrolysis cell:
I1
--------------- V1
| |
| -------------
| | |
| | C1
AC L1 | I2
| | |
| | I3 R1
| | |
| -------------
| |
--------------- Ground
AC - AC source
L1 - Inductor
C1 - The cell capacitance
R1 - The net cell resistance
I1 - Input current (rms)
I2 - Cell current (rms)
I3 - Inductor current (rms)
V1 - supply voltage = cell voltage
Xl - Reactance of L1
Xc - Reactance of C2
Fig. 1 - Resonant circuit for AC electrolysis cell
When the operating frequency is at the resonant frequency for the tank
circuit L1, C1, R1, the net impedence of the tank circuitis maximum to the
AC source, thus the current through the cell I2 is at a maximum with
respect to the input current I1. In fact,
I2 = Q * I1 = I3
Where Q is given by:
Q = Xl/R1
and is a measure of the sharpness of the resonance peak. Since values of Q
over 100 are not uncommon in ordinary resonance circuits, this is
fascinating, and hints at ou behaviour all by itself, assuming the cell can be made efficient enough that heat from ambient becomes a large contributor
to the splitting reaction.
The cell is portrayed as a capacitor C1, though it is known that its makeup is really more in the form of a lattice where elements connecting nodal points consist of a resistor and capacitor in parallel. In addition, the cell is capacitively linked, so there is a set of capacitances around the electrolyte as well. A simplified model of the cell might look like the
following:
|
|
C2
|
-----------------
| |
| |
C4 R2
| |
| |
-----------------
|
|
C3
|
Fig. 2 - Simplified circuit for
capacitively linked cell
Here C2 and C3 are the capacitive interface to the electrolyte, either an insulator around the electordes, the tank walls, or a combination. The
elecrolyte, or slurry, is represented by C4 and R2 in parallel. For
purposes of simplifying the analysis, the electrolyte resistance R2 can be
rolled into the tank resistance R1, and we also have for the series
capacitances:
1/C1 = 1/(C2 + C3 + C4)
In other words, if R2 is large, if the cell walls and electrolyte all have the same dielectric constant, then the cell is equivalent to a capacitor the width of the cell, including electrolyte and plate insulators. If R2
is very small, then:
1/C1 = 1/(C2 + C3)
and we can treat the two insulators as an equivalent insulator as thick as
the sum of the two.
It is especially of interest that, as the cell area gets bigger, R2 drops,
yet the capacitance C1 increases, thus Q increases. This has the
appearance of some kind of economy of scale.
Now for some sample design numbers.
ASSUMPTIONS
10 cm x 10 cm plates (plate size)
V1 = 20 kV (resonant operating voltage)
Ke = 50 (dielectric constant of ceramic)
Ks = 1000 V/mil = 3.94 x 10^5 V/cm (dielectric strength)
F0 = 16,000 Hz (resonant frequency)
R1 = cell resistance = 1 ohm
CALCULATIONS
Total plate thickness D1 = V1/Ks = (2x10^5 V)/(3.94 x 10^5 V/cm) = 0.508 cm
Using 50 percent margin, D1 = .762 cm
Area A = 100 cm^2
The ratio A/d1 = (100 cm^2)/(0.762 cm) = 131
Capacitance C1 = Ke (A/d1) (8.85 x 10^-12 F) = 5.80x10^-8 F
Impedence of capacitor Xc = 1/(2 Pi F0 C1) = 1/(2 Pi (16,000) (5.80x10^-8 F))
Xc = 172 ohms
Current through cell I2 = V1/Xc = (20,000 V)/(172 ohms) = 116 amps
Knowing energy of inducatance is equal to energy of capacitance we have:
L1/C1 = (V1/Ic)^2 = (20000/116)^2 ohms^2, so we have
inductance L1 = (2.97x10^4)(C1) H = (2.97x10^4)(5.80x10^-8) H
L1 = 1.72 mH
Inductive reactance Xl = 2 Pi F0 L1 = 2 Pi (16000) (1.72x10^-3) ohms
Xl = 173 ohms
Q = Xl/R1 = 173/1 = 173
Thus we have the driving current:
I1 = I2/Q = (116 A)/173 = 0.67 A
And driving power:
Pd = I1 * V1 = (0.67 A) (20,000 V) = 13.4 kW
Apparent power:
Pa = I2 * V1 = (116 A) (20,000 V) = 2.32 MW
Horace Heffner
http://www.mtaonline.net/~hheffner/
[Vo]:Re: Sample numbers for resonant AC electrolysis Horace Heffner
Reply via email to
- sano
- Zasloužilý člen
- Příspěvky: 942
- Registrován: stř 08 úno 2006 23:48
- Dostal: 18 poděkování
Meyersov vyvíjač vodíka,
http://www.alexpetty.com/2010/11/17/mey ... mment-2231
malo by tam byť všetko. Autor je skúsený konštruktér vodíkových vyvíjačov. Jeho replika bola overená viacerými členmi na overnunity.
malo by tam byť všetko. Autor je skúsený konštruktér vodíkových vyvíjačov. Jeho replika bola overená viacerými členmi na overnunity.